mathematics

Set Theory Problem

There are at most aleph-zero disjunct 3D spheres in 3D space. And there are at least aleph-one disjunct 2D circles in every finite volume part of the 3D space?

The number of points in N dimensional space is always aleph-one. And you can also divide this space into aleph-one disjunct N-1 dimensional spheres.

Is there a way to divide 3D space into aleph-one cubes with no common volume? They may touch each other, but may not share some common volume.

If you can find one such space division, you brought down the ZF Set Theory.

EDIT:

Discussion there:

http://lesswrong.com/lw/p5p/open_thread_june_19_june_25_2017/du4t

Advertisements
Standard

One thought on “Set Theory Problem

  1. Pingback: Rational Feed – deluks917

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s